

Quality Attributes for Mission Flight Software:

A Reference for Architects

Jonathan Wilmot
NASA

Goddard Spaceflight Center
Greenbelt, MD 20771

301-286-2623
Jonathan.J.Wilmot@NASA.gov

Lorraine Fesq
Jet Propulsion Laboratory,

California Institute of
Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

818-393-7224
Lorraine.M.Fesq@jpl.nasa.gov

Dan Dvorak
Jet Propulsion Laboratory,

California Institute of
Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

818-393-1986
Daniel.L.Dvorak@jpl.nasa.gov

Abstract— In the international standards for architecture

descriptions in systems and software engineering

(ISO/IEC/IEEE 42010), “concern” is a primary concept that

often manifests itself in relation to the quality attributes or

“ilities” that a system is expected to exhibit — qualities such as

reliability, security and modifiability. One of the main uses of

an architecture description is to serve as a basis for analyzing

how well the architecture achieves its quality attributes, and

that requires architects to be as precise as possible about what

they mean in claiming, for example, that an architecture

supports “modifiability.” This paper describes a table,

generated by NASA’s Software Architecture Review Board,

which lists fourteen key quality attributes, identifies different

important aspects of each quality attribute and considers each

aspect in terms of requirements, rationale, evidence, and

tactics to achieve the aspect. This quality attribute table is

intended to serve as a guide to software architects, software

developers, and software architecture reviewers in the domain

of mission-critical real-time embedded systems, such as space

mission flight software.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. BACKGROUND – PURPOSE AND DEVELOPMENT

OF THE QA TABLE .. 1

3. A DESCRIPTION OF THE QA TABLE 2
5. FUTURE WORK ... 5
6. SUMMARY ... 5
7. ACKNOWLEDGEMENTS 6

REFERENCES ... 6
BIOGRAPHIES .. 6

1. INTRODUCTION

In the process of architecting, developing and evaluating

software architectures, the discussion of quality attributes

comes up quickly. Questions arise about which attributes are

being addressed in the architecture, what are the definitions

of those attribute terms, and what is the evidence of those

attributes in the architecture or implementation? While there

is a significant body of work available on the topic of

quality attributes, they tend to be broad, incomplete, or

leave the terms open for interpretation. In order to use

quality attributes as part of a software architecture

assessment, NASA’s Software Architecture Review Board

(SARB) set out to create a more complete and objective list

with defined metrics that could be used during SARB

reviews. The result is a table where each attribute is

formatted as a row with columns for descriptions,

requirements, rationale, metrics and common approaches for

how that attribute can be achieved in an architecture

implementation. Table 1 shows example rows of the table.

2. BACKGROUND – PURPOSE AND DEVELOPMENT

OF THE QA TABLE

Purpose

The Quality Attribute Table presented in this paper is

intended to document a set of software architecture quality

attributes that can be used within the domain of mission-

critical, real-time, embedded systems. This is the primary

domain of NASA’s Software Architecture Review Board

which focuses on astronautic and aeronautic systems. This

paper provides background, rationale, and a description of

how the QA Table could be applied. The QA Table has

multiple intended purposes: as a guide for software

architects, project teams, and implementers during

development of an architecture, and as guide for project

teams and reviewers to assess an architecture’s suitability

for a given mission(s). It is important to reiterate that the set

of quality attributes in this table are the ones deemed most

important in the domain of space mission flight software.

Thus, readers who are more accustomed to enterprise

software or web services, for example, may not see the

attributes and aspects that are most important to their

domain.

https://ntrs.nasa.gov/search.jsp?R=20160005787 2020-05-09T12:35:57+00:00Z

mailto:Lorraine.M.Fesq@jpl.nasa.gov
mailto:Daniel.L.Dvorak@jpl.nasa.gov

 Background on the SARB

NASA’s Software Architecture Review Board (SARB) was

formed in 2009 following a recommendation from the final

report of the Flight Software Complexity Study [1]. Its

charter is to manage and/or reduce flight software

complexity through better software architecture and to help

improve mission software reliability. The SARB does that

by providing constructive feedback to flight projects during

the formative stages of software architecting, well before a

project reaches its Preliminary Design Review (PDR).

Depending on the needs and importance of a project,

reviews have varied in duration from a couple

teleconferences with verbal feedback to a two-day face-to-

face meeting resulting in a documented board report. In

preparation for a review, the board typically holds two-to-

three brief discussions with the architect to obtain

preliminary documentation, understand driving

requirements, and decide where to focus attention during the

review. Those discussions often center on software quality

attributes of particular importance to spacecraft flight

software. The QA table described in this paper serves as an

important reference that the board shares with architects and

uses during reviews. The QA table and other materials used

in preparing for a review are maintained on the SARB

Community of Practice page of the NASA Engineering

Network website at https://nen.nasa.gov/web/software/sarb.

The Development of the QA Table

Development of this QA table began in late 2013 as part of

the National Space Universal MOdular Architecture

(SUMO) effort, shown in Figure 1, initiated by the Office of

the Director of National Intelligence (ODNI) with a goal to

“Reduce the cost of satellites while introducing modular

concepts that can encourage innovation.” [2] One of the

tactics was to have a common software architecture

supporting a competitive marketplace of software and

hardware components. As part of the process, the SUMO

software architecture team began evaluating existing

software architectures currently in use at US agencies (e.g.,

NASA, DoD, NRO) along with those of several spacecraft

vendors. Within a few weeks of starting these evaluations, it

became clear that a list of quality attributes with consistent

definitions and defined metrics was not available, at least

within the domain of flight software. Initially the team

gathered the attributes from architectures being evaluated as

defined within the respective Architecture Description

Documents (ADD). Work continued to merge and

harmonize the list up until the SUMO effort was disbanded

a few months later.

Figure 1 Overview of SUMO

In that relatively short time, the SUMO software team was

successful in creating a draft QA table and had started using

it as part of its architectural assessments. As some SUMO

team members were also members of the SARB, it was

proposed that the SARB should continue to mature the QA

work. It is important to note that early ODNI sponsorship

provided a level of access across US agencies and industry,

as shown in Figure 1, that NASA’s SARB could not have

achieved on its own. This led to a broader and more relevant

QA table, as each organization had different use cases and

perspectives.

To continue the process of identifying relevant QAs for the

Table, the authors reviewed papers, references and books [3,

4, 5, 6, 7, 8, 9] and collected a fairly comprehensive list of

attributes. Some attributes, such as “Manageability”, were

considered outside the scope of embedded flight software

(FSW), and were removed. Others were deemed similar to,

or overlapping with other QAs, and were combined in the

table (see Column B description). Once the list was

completed, it was vetted and refined by the SARB. The

SARB then worked through the process of how the table

would be used, and identified the columns described in the

next section. Members of the SARB selected QAs that were

of the most interest to them, and filled in the rows of the

table. These entries then were reviewed by the entire SARB

team, and updated into the current version, posted on the

SARB Community of Practice Website.

 3. A DESCRIPTION OF THE QA TABLE

The QA Table is organized as a set of rows for the selected

attributes with the columns in those rows specifying the

associated descriptions, properties, and parameters. Each

attribute has one or more “Aspect of” that provide a context

for the remaining columns in that row. It became clear early

on that without context to narrow the scope of a QA, it was

extremely difficult to generate the text for the remainder of

the row. For example, with the QA “Portability,” questions

arose: portability of what? Applications, services,

architectural frameworks? It was only with a “Portability”

QA in context of “Operating Systems” that we could then

specify the requirements, rationale, evidence and tactics to

achieve application and framework portability across

operating systems. Specifying context was seen as a key

missing element with existing QA documents which tended

to keep the attributes overly broad and unsuited for the

SARB target domain.

The team started with the draft list developed by the SUMO

architecture working group and then pulled additional

attributes from: architecture documentation provided in

previous SARB reviews, papers and books on software

architecture, and information from the Internet. After much

discussion on the many potential attributes, the SARB team

arrived at fourteen key quality attributes for flight software:

Portability, Interoperability, Modifiability, Performance,

Availability, Reusability, Predictability, Usability,

Scalability, Verifiability, Manage complexity, Security,

Safety, and Openness. Many of these had related terms that

were added to the description as “Also Known As” (AKA)

terms. The AKA terms were viewed as being synonym of a

QA, or as defining a subset of one of the fourteen QAs

chosen and could be directly captured in the “Description”

column or conceptually in the “Aspect of” column.

Column A: The Quality Attributes

The first column in each row is the quality attribute to be

addressed. This column contains the chosen term indicating

the non-functional requirement or property of the

architecture to be implemented or reviewed. The term was

selected through consensus by the SARB members, since

different perspectives led to differing opinions as to which

terms best fit the desired property.

Column B: Description of the QA and other terms used to

describe the quality

Each Quality Attribute identified in Column A is defined in

Column B to help the user understand what is meant by the

term. For example, “Portability” is defined as “A design and

implementation property of the architecture and applications

supporting their use on systems other than the initial target

system.” Numerous references were used to define each

QA, including Webster’s dictionary, papers, journal articles

and books [3, 4, 5, 6, 7, 8, 9].

For a number of QAs, multiple terms were identified as too

similar to deserve a separate row in the table, so instead, the

authors noted them as “AKA” synonyms of the primary QA.

For example, the terms Adaptability, Upgradeability,

Variability, Flexibility, Evolvability, Extensibility, and

Extendibility are noted in Column B as synonyms of

Modifiability.

Column C: Aspects of the QA

The term “Aspect of” is intended to define a context for the

attribute. The “State/behavior” aspect of the QA

“Predictability” can be rephrased as “the predictability of

the state/behavior of the architecture.” The QA

“Portability” has numerous entries for “Aspect of” that help

provide context; they allow the architect or evaluator to

individually specify whether the application or system is

portable across real-time/non-real-time implementations,

across operating systems, across avionics platforms, or

across any combination of those aspects.

Column D: Requirements

Column D contains sample requirements that the

architecture must satisfy to claim support of a quality

attribute. These requirements are verifiable statements, and

are specific to each “Aspect of” row, as they need to be

associated with a specific QA context. Unlike functional

requirements, many of the QA requirements need to be

confirmed by inspection or demonstration. For example, to

claim the QA “Portability” with an “Aspect of” operating

systems, it must be shown that the same application source

code could be compiled and executed on two or more

operating systems without modification to the application

source code. This proof would be listed in Column F, the

“Evidence of/verification” column. Also note that

requirements may have a more subjective scale associated

with them. To reuse the “Portability” example, if the

architecture required just a slight application modification,

that should rank higher in satisfying the QA than an

architecture that required significant modification. The

Requirements in column D are offered as examples that

could be used by projects.

Column E: Rationale

The “Rationale” column documents how each QA

requirement adds value to an architecture for a project or

projects. The team did not list all possible rationale, but

focused on the one or two considered most important. For

example, a project may choose to ensure that the

architecture shall support application execution in real-time

and non-real-time environments. The rationale for this is to

allow the architecture to support both flight and test (e.g.,

desktop) run-time environments, which is described in the

Rationale.

Column F: Evidence of/Verification

Column F is where the architect responds to Column D

(Requirement); it is where the project provides evidence that

the requirement has been verified, or how it will be verified.

For example, one aspect of portability is OS portability, and

the associated requirement (Column D) is: “The architecture

shall support application execution on a range of operating

systems without modification of the application.” This

requirement would be convincingly met if the project

“demonstrates execution on multiple operating systems with

no changes to the application,” as stated in Column F.

Column G: Tactic to Achieve

A tactic is a design decision that influences the control of a

quality attribute response [Bass et al, 2003]. Thus, Column

G is where the project identifies design decisions to be used

in meeting the requirements in Column D. Explicitly

identifying such decisions enables experienced reviewers to

challenge a decision if they feel the tactic is inadequate or

insufficiently described. For example, in the aspect of

Portability related to operating systems, the QA table

provides “standards and abstractions” as general tactics that

could be used to meet the Requirement. In a review,

however, the project should spell out specific standards and

abstractions.

Columns H-I: Project Prioritization and Project Intended

Variation

Each row of the table has two columns for use by project

software architects, implementers, and reviewers. “Project

Prioritization” and “Project intended variation” are to be

completed by project personnel in the very early stage of

development concurrently with the system requirements. All

QAs should be reviewed to decide/establish the priority of

each (Not Applicable, Low, Medium or High) in Column H.

For example, “Portability” may be High priority for a

project creating a reusable software system meant to be

instantiated by many users, whereas “Portability” would not

be an important QA for a one-of-a-kind special software

system intended for only one use. In addition, projects

should specify any variations of a QA that are needed. For

example, perhaps a project would like portability across

only two operating systems. If both operating systems

support POSIX, then the QA requirement could be met

using POSIX as the choice for the “Standards and

abstractions” tactic. These details should be captured in

Column I. The intent of these two columns is to capture the

intended QA goals of the system and have them consistently

documented for early agreement by all stakeholders before

the architecture and software development begins.

4. Use Cases

The QA Table has at least three primary use cases, as

described in the following subsections. The first describes a

Use Case from a software architect’s and project team’s

perspective, where the table is used to evaluate and

determine the priorities of each QA for a specific project.

The second describes the use during software development,

Table 1 Snapshot of the QA table showing example of one quality attribute

A B C D E F G
Attribute Description with

AKA terms bolded

Aspects of Requirement Rationale Evidence of/verification Tactic to achieve Project

Prioritization

Project intended

variation

Real-time and

non-real-time

The architecture shall

support application

execution in real-time

(hard and soft) and non-

real time environments

1) Supports both flight and test

run-time environments and as

well as deployments to

potentially lower cost non-real-

time systems.

Demonstrate execution on a real

time flight target and a non real-

time target with no changes to

the application

Application logic is

separated/abstracted from

execution

environment/framework

(NA, Low, Med, Hi,

Priority is intended to

allow trades when QAs

come in into conflict.)

List intended targets. (non-

real-time, soft real-time,

hard real-time, Time-

Triggered)

Operating

systems

The architecture shall

support application

execution on a range of

operating systems without

modification of the

application

Operation system selection is a

project choice and is typically

based on cost, Quality of

Service requirements, and

target platform support (Board

support package)

Demonstrate execution on

multiple operating systems with

no changes to the application

(Automated tool driven changes

may be considered)

Standards and abstractions. For

example, ‘segregate operating

system calls in an abstraction

layer; use multi-OS standards such

as POSIX or ARINC 653; MBSE with

multi-OS code generator’

Processor/platf

orm

The architecture shall

support application

execution on a range of

processors and platforms

without modification of

the application

Processors and platforms are

typical variation points project

to project. Enabling projects to

select processors and platforms

with minimal affects to

applications allows for system

optimization

Is the architecture

Processor/Platform interface

abstraction sufficient such that

applications can be rehosted on

another Processor/platform

without modification (Additional

points for the number of

supported platforms)

Standards and abstractions. For

example, these tactics could

include 'segregate hardware

interactions to a hardware

abstraction layer; disallow use of

platform-specific extensions to

programming language; MBSE

with multi-platform code

generator; component library for

standards-

Services The architecture shall

provide a common set of

standard service interfaces

Services will not have to be

recreated for each software

instantiation. Application

software will not have to

implement service functions.

Is the list of common/standard

services sufficient such that

applications can be rehosted on

another architecture

instantiation without

modification

 Standardize and abstract

interfaces to common services.

Analyze services that are common

to the system domain and ensure

that the service interface

abstraction hides variation points.

Middleware The architecture shall

isolate the application

from changes to the

Enables use of 3rd party

middleware without vendor

lock

Is the middleware abstraction

sufficient to support the

common middleware interfaces.

Standards and abstractions

Portability

A design and

implementation

property of the

architecture and

applications

supporting their use

on systems other than

the initial target

system.

 H Project specified I

and the third describes use in the review process to evaluate

a software architecture with respect to each QA in the Table.

Architect/Project team Use Case

Quality attribute priority and variation points have a very

significant impact on the architecture and should be used to

directly inform the trades that must be performed and then

reviewed by all stakeholders. If the architect intends the

system to be a reusable application framework, then

“Portability” would be documented as a high priority with

the appropriate variation targets listed. However, a common

tactic to achieve Portability is to add abstraction layers that

can impede system performance. This conflict must be

traded when implementing some of the “Tactics to achieve.”

In this case, the “Performance” QA would be rated lower in

priority than the “Portability” QA.

This table is also intended to inform an architect and/or a

project software team about why they should consider

certain QAs in the architecture under development or being

considered for a project. The “Rationale” for “Portability”

across “Processors/platforms” has the potential to reduce the

risk to a project if the processor needs to change due to

performance or availability reasons, or if the project consists

of several mission over a long period of time. These

concerns may not have been considered, but are brought to

light in the “Rationale”. In this way, the “Rationale” has

been used, and can be used by projects, to capture best

practices.

Developer Use Case

Developers perform the task of implementing the

architecture and need to be especially mindful of the “Tactic

to achieve”, “Evidence of/verification”, “Project

Prioritization”, and “Project intended variation” columns for

each attribute during the design and code process.

Developers perform many of the detailed implementation

trades, and provide the detailed evidence and verification

products. For “Portability,” these would include identifying

specific standards that were used, and what middleware was

selected or developed. During project reviews such as a

Preliminary Design Review or Critical Design Review, the

architect(s), project team, and stakeholders can review the

current design, implementation, and trade documentation to

ensure that the Quality Attributes are being instantiated as

intended.

Reviewer Use Case

The SARB team engages projects early in the life-cycle,

usually before a Preliminary Design Review. By the time

the SARB holds a review, it has already interacted with the

project software architect to identify driving requirements

and associated quality attributes that pose the biggest

challenge, or biggest risk if not satisfied. Thus, the first use

of the table in a review is to examine the priorities shown in

Column H (Project Prioritization) to see if they are in

agreement with the formally described driving requirements.

Those priorities should not all be “High.” Architecting

inevitably involves tradeoffs, so it may be necessary to

sacrifice a “medium” or “low” QA in order to achieve a

“high” QA. There should be a range of priorities so that

reviewers can see how some tradeoffs will be made.

Reviewers will then use the QA table to probe into

architectural details with respect to Column D

(Requirement), Column F (Evidence of/Verification) and

Column G (Tactic to achieve). In places where an ADD

lacks convincing evidence (Column F), discussion in the

review will reveal whether it is a weakness in the

architecture or in its documentation.

5. FUTURE WORK

As a test run of the QA Table across two of the primary use

cases, SARB members will use the table to assess existing

software architecture(s). As a first step, the SARB will ask

the original architect(s) to complete the “Project

Prioritization” and “Project intended variation” columns as

originally intended and then provide the “Evidence

of/verification” information. The goals are threefold: (1) To

validate text in the “Requirement”, “Evidence

of/verification”, and “Tactic to achieve” columns; (2) To

mature the document with additional tactics or types of

evidence; and (3) To provide objective feedback to the

architects on how well the original intents were satisfied.

6. SUMMARY

This paper describes a table of Quality Attributes that was

developed by NASA’s Software Architecture Review Board

as an aid to flight missions. The QA Table is intended for

use by flight software architects to help them consider and

determine which attributes are important to their mission.

This table serves as a reference for FSW architects to ensure

that they have considered all relevant QAs. With the

“Project specified” columns filled out by project teams and

relevant stakeholders, this table then serves as a set of

requirements and a guide for designers and implementers.

Additionally, this table also can serve as an aid to flight

software architect reviewers, allowing them to assess the

architecture by examining the priorities that the FSW

architect and project team have selected for a mission, as

well as the trades that went into making these architectural

decisions. Note that this QA table is expected to be a living

document with additional “Aspects of”, “Requirements”,

“Rationale”, and other columns to be documented as

software technology evolves.

The QA table is currently available for all NASA missions,

and can be accessed on the NASA Engineering Network

SARB Community of Practice Website at URL

https://nen.nasa.gov/web/software/sarb . The authors have

started the process for an open release of the QA table and

expect a release in a few months.

7. ACKNOWLEDGEMENTS

The authors of this paper acknowledge the following

persons who worked as a team to develop the QA table: Ken

Costello, NASA Independent Verification and Validation

Facility; Michael Madden, NASA Langley Research Center;

Alex Murray, Jet Propulsion Laboratory, California Institute

of Technology; Darrel Raines, NASA Johnson Space

Center; John Weir, NASA Marshall Space Flight Center;

Kathryn Weiss, Jet Propulsion Laboratory, California

Institute of Technology; and Dr. William G. Antypas, Jr,

Senior Scientist with CRL Technologies Inc. The authors

also thank Michael Aguilar, NASA Technical Fellow for

Software, for sponsoring the SARB and the work described

in this paper, and Professor David Garlan, Carnegie Mellon

University, for his thorough review and insightful comments

and recommendations that improved the quality of our

product.

Part of the research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space

Administration.

REFERENCES

[1] Dvorak, (2009), “NASA Study on Flight Software

Complexity”, [Online]. Available:

http://www.nasa.gov/offices/oce/documents/FSWC_study

.html

[2] Collins, B (2013), “Space Universal Modular

Architecture (SUMO): CCSDS Spring Plenary“ [Online].

Available: http://cwe.ccsds.org/sois/docs/SOIS-

APP/Meeting%20Materials/2013/Spring/SUMO%20CCS

DS%20Spring%20Plenary.pdf

[3] Len Bass, Paul Clements and Rick Kazman. Software

Architecture in Practice, 2nd Edition, Chapter 5, Addison

Wesley, 2003.

[4] Software Systems Engineering by Andrew P. Sage and

James D. Palmer, 1990, Wiley Interscience

[5] Wikipedia (2015) “List of system quality attributes”

[Online]. Available:

https://en.wikipedia.org/wiki/List_of_system_quality_attri

butes

[6] Wikipedia (2015) “Non-functional requirement” [Online].

Available: https://en.wikipedia.org/wiki/Non-

functional_requirement

[7] Len Bass, Paul Clements and Rick Kazman. Software

Architecture in Practice, 2nd Edition, Chapter 4, Addison

Wesley, 2003

[8] Merriam-Webster’s Collegiate Dictionary (11th ed.).

(2005). Springfield, MA: Merriam-Webster.

[9] Firesmith, Software Engineering Institute; QUASAR: A

Method for the QUality Assessment of Software-Intensive

System Architectures; CMU/SEI-2006-HB-001; July

2006.

BIOGRAPHIES

Jonathan Wilmot is an aerospace

Computer Engineer at NASA’s

Goddard Space Flight Center in the

Flight Software Branch. He has over

30 years of aerospace software

experience. Following several years

developing software for commercial

and defense avionics, he joined

NASA in 1991 as a lead software

engineer on the Small Explorer

series of spacecraft. After varied roles on over 12

spacecraft, he now serves as a software systems architect

with NASA’s Core Flight System (cFS) reusable software

framework project. He is also serves as a Deputy

Software Technical Discipline Lead with the NASA

Engineering & Safety Center, and as Chair of the

Spacecraft Onboard Interface Services Working Group

within Consultative Committee for Space Data Systems

(CCSDS) international standards organization. He

received his BS in Software Engineering at the University

of Maryland College Park.

Lorraine Fesq is a Principal

Engineer in the Engineering

Development Office at NASA’s Jet

Propulsion Laboratory. She has

over 30 years of aerospace

experience that spans industry,

government and academia, has

worked all mission phases of

spacecraft development. She has

received a NASA Public Service

Medal for her work on the Chandra X-ray Observatory,

and a NASA Exceptional Achievement Medal for

advancing the Fault Management discipline within NASA.

Lorraine taught in the Aeronautics/Astronautics

department at MIT while researching model-based

diagnostic techniques. She organized both of NASA's

Fault Management Workshops, which brought together

Fault Management practitioners and experts from NASA,

DoD, industry, and academia to share insights and to

expose and address systemic challenges. Lorraine led a

NASA-wide assessment and advisory team to review the

Constellation Program and to recommend improvements

to the program’s Fault Management plans, designs, and

organizational structure. Lorraine is the Lead for NASA’s

FM Community of Practice, is the co-Lead for NASA’s

Software Architecture Review Board, and serves as a

Deputy Software Technical Discipline Lead with the

NASA Engineering & Safety Center. Lorraine received

her B.A. in Mathematics from Rutgers University and her

M.S. and Ph.D. in Computer Science from the University

of California, Los Angeles.

Daniel Dvorak is a Principal

Engineer in the Engineering

Development Office at NASA’s

Jet Propulsion Laboratory,

California Institute of

Technology, where his interests

span software architecture,

autonomous control, fault

management and model-based

systems engineering. Dan co-

leads the NASA Software Architecture Review Board,

under which this quality attribute table was developed.

Dan holds a BS in electrical engineering from Rose-

Hulman Institute of Technology, an MS in computer

engineering from Stanford University, and a Ph.D. in

computer science from The University of Texas at Austin.

